
1

2

JEFFREY RICHTER
JOHN ROBBINS
DAVID CONLIN
SHMUEL ENGLARD
RYAN RILEY
CHRIS ALLEN
ROBERT HAKEN
MITCHEL SELLERS
NIALL MERRIGAN
CHRIS HURLEY
RAGHAVENDRA
MATT LEE
JP TOTO
MICHAEL WILLIAMSON
TIAGO PASCOAL

Foreword

When we launched the predecessor to this
book, 50 Ways to Avoid, Find and Fix ASP.NET
Performance Issues, we had no idea what a hit it
would be. More than 15,000 of you have got a
copy, it’s been featured on www.asp.net, and it
took Twitter by storm.

Rising adoption of MVC 4 and Web API means
more new chances for performance improvements
than you can shake a stick at, so this book adds
(among other things) a fistful of new tips for those
technologies, all from members of the ASP.NET
community. I’d like to thank them all for their
excellent contributions.

Last time, I said that between us we could make
ASP.NET applications run faster than Usain Bolt
with cheetahs for shoes. We’re not quite there yet,
but I hope all of you find a few tips more here to put
a gazelle-like spring in your applications’ step.

Michaela Murray
dotnetteam@red-gate.com

4 PB4

Contents

Foreword 3

Want to build scalable websites and services?
Work asynchronously 6

Where are your custom performance counters? 7

RavenDB 8

Don’t call AsEnumerable on a collection before
using LINQ 9

Never call .Wait() or .Result on a Task 10

Throwing HttpResponseExceptions 11

Web API tracing 12

Message Handlers 13

Database access 14

When you’re profiling, prefer accuracy to detail 15

Make the most of connection pooling by closing
SQLConnection as soon as possible 16

OutputCache 17

Use ConfigureAwait to avoid thread hopping,
especially in library code 18

Be careful of variable allocations 20

5

How to stress test your public facing web
application using the cloud (or without it) 22

Using the keyword await doesn’t make the
work asynchronous 24

Don’t use async/await for short methods 25

Turn off Change Tracking in Entity Framework 26

Always use compiled queries in Entity Framework 27

Diagnosing JavaScript memory leaks with Chrome
Dev tools 28

Monitoring memory consumption over time 30

Use JValue in JSON.Net to parse complex JSON
objects that you don’t have POCO types for 32

Cache JavaScript and CSS permanently 34

Load external JavaScript content asynchronously 35

Profile, don’t speculate! 36

More free eBooks from Red Gate 37

Tools from Red Gate 38

6 PB

Want to build scalable websites and
services? Work asynchronously
Jeffrey Richter
www.wintellect.com

One of the secrets to producing scalable websites
and services is to perform all your I/O operations
asynchronously to avoid blocking threads.

When your thread issues a synchronous I/O request,
the Windows kernel blocks the thread. This causes
the thread pool to create a new thread, which
allocates a lot of memory and wastes precious CPU
time. Calling xxxAsync method and using C#’s
async/await keywords allows your thread to return
to the thread pool so it can be used for other things.
This reduces the resource consumption of your
app, allowing it to use more memory and improving
response time to your clients.

1

7 PB

Where are your custom
performance counters?
John Robbins
@JohnWintellect, www.wintellect.com

Performance counters are a great way to watch how
you are using .NET, IIS, the database, and much
more on the operating system. However, the real
benefits of performance counters come when you
start using them to record data that’s unique to
you, such as how many logins you’ve had, what’s
the average time for your web service to process a
specific request, and anything else you can imagine.

With .NET’s excellent PerformanceCounter class
doing the work for you, creating performance
counters is so simple a manager could do it. By
spending no more than an hour on planning and
implementation, you can get a ton of actionable
information out of your application in production.
Performance counters are cheap, easy, and you can
never have enough.

2

http://msdn.microsoft.com/en-us/library/system.diagnostics.performancecounter.aspx

8 PB

RavenDB
David Conlin
Red Gate, agilelikeacat.com

RavenDB has built in protection against the select
n+1 problem and also forces you to think about
paging early on. It’s really good at making you build
database performance in from the ground level.

3

9 PB

Don’t call AsEnumerable on a
collection before using LINQ
Shmuel Englard
@shmuelie, blog.englard.net

When you’re using an ORM that has LINQ to SQL,
such as Entity Framework, do not call AsEnumerable
on the collection before using LINQ, even if that
gives you options that are easier to work with.

If you do, it means your LINQ query is run client-
side, rather than converted to SQL and performed
on the database server.

4

10 PB

A selection of tips from
Ryan Riley
@panesofglass

Never call .Wait() or .Result on
a Task

Never call .Wait() or .Result on a Task within your
application; it can bring your server crashing
down. It shouldn’t be necessary to mention this,
but so many examples do this that it’s worth
reiterating.

5

11 PB

Throwing HttpResponseExceptions

This is a very handy way to skip to the end of a
processing chain when something goes wrong. Sure,
you can return an HttpResponseMessage, but it will
pass through the filters and handlers on its way out.
Throwing an HttpResponseException skips all that
and goes right to the end. Use it with the same care
you would use in throwing any exception.

6

12 PB

Web API tracing

Web API integrates tracing, so as to make it very easy
to know what’s going on throughout the lifetime
of your services. Microsoft has released an add-
on package to enable tracing of Web API using
System.Diagnostics. You can also find adapters
for NLog and log4net on NuGet. This is really
helpful for tracking down unexpected responses
or unhandled exceptions, especially in production
applications. For the best performance, of course,
you should use Event Tracing for Windows (ETW).

You can find a sample project showing how this can
work with Web API in the samples here.

7

http://aspnet.codeplex.com/SourceControl/BrowseLatest#Samples/WebApi/EtwTracingSample/ReadMe.txt

13 PB

Message Handlers
If you only have to handle simple cases and don’t need
complex routing, you can handle a given route directly
by inheriting from DelegatingHandler and setting this
custom handler as the last parameter of config.Routes.
MapHttpRoute. This completely bypasses the filter
pipeline and requires a lot more manual work, but it also
bypasses all the Reflection-based controller and action
lookups. Here’s an example:
https://gist.github.com/panesofglass/5831674.

You can also share common logic between some of the
controllers by using this approach and manually hooking
up the controller dispatcher, as in
https://gist.github.com/panesofglass/5831674.
This is slightly better than the filter approach because
you can return a response before all the Reflection-based
lookups occur, although even the default Reflection-

based lookups are fast, because they’re cached.

8

14 PB

Database access

Most examples of Web API use either Entity
Framework directly or show some abstractions such
as Repository and/or UnitOf Work, which introduce a
number of classes, as well as strong typing. That’s all
good. However, in many Web API cases you’re simply
exposing, and possibly transforming, data from a
data store. You are probably reading in values from a
query string, JSON, or XML, and manipulating SQL.
All of these are strings. While you can certainly use
a serializer to work with inputs and use casting to
correctly validate data types, in many cases you can
forego the cost of boxing/unboxing or serializing/
deserializing by using dynamics. I have a gist that
shows how to do this using Dapper (with Async
support):

https://gist.github.com/panesofglass/5212462.
Use it as a way of eking out extra performance,
rather than a standard approach.

9

15 PB

When you’re profiling, prefer
accuracy to detail
Chris Allen
Red Gate, www.facebook.com/chrissy.f.allen.1

There is always a trade-off between accuracy and
detail, and before you start optimizing you want
to be very sure of your data. Sampling techniques
tend to be more accurate than instrumentation
techniques.

If you feel you really must get line-level detail, do it
as a second pass after you’ve narrowed down your
most expensive call stacks.

10

16 PB

Make the most of connection
pooling by closing SQLConnection
as soon as possible
Robert Haken
@RobertHaken, knowledge-base.havit.cz

Close or Dispose your SqlConnection as quickly as
possible to take advantage of connection pooling
in ADO.NET. Closed connections return to the
connection pool, where they remain cached, so
you won’t need to create a new connection. Take
advantage of the using statement to restrict the
scope of your SqlConnections for the short
time you need them.

11

17 PB

OutputCache
Robert Haken
@RobertHaken, knowledge-base.havit.cz

Use output caching whenever your rendered HTML
does not vary between requests, or if you have only
a few variants. If you need isolated updates, consider
using the Substitution control, or apply selective
output caching by breaking your page into several
UserControls, each with its own OutputCache.

12

18 PB

Use ConfigureAwait to avoid thread
hopping, especially in library code
Mitchel Sellers
@mitchelsellers

One of the most amazing thing about using async/await
keywords for async and background processes is that you
don’t have to do anything special to be able to interact
with the UI thread.

For example, if you trigger an async operation on the
UI thread, then interact with a TextBox after the code
returns, the .NET framework will automatically marshal
the continuation back to the UI thread for you behind
the scenes.

This is often very helpful, because you need to interact
with the UI thread, but there are other times where you
really are thread agnostic. In those cases it is important
to use ConfigureAwait to set ContinueOnCapturedContext
to false. This ensures that the .NET runtime doesn’t have
to go through the effort of resuming your method on
the thread that called it. In general, this prevents a lot of
back-and-forth thread hopping, but in some cases it can
be even more helpful.

13

19 PB

Consider this example using ConfigureAwait:

byte [] buffer = new byte[0x1000];

int numRead;

while((numRead = await

source.ReadAsync(buffer, 0, buffer.Length).ConfigureAwait(false)) > 0)

{

await source.WriteAsync(buffer, 0, numRead).ConfigureAwait(false);

}

This code reads an input source in small blocks. If
we were working with a large input stream, we could
easily have 10, 20, or even more different await cycles.
Each cycle through is at least two async calls, with
two sets of callbacks to the calling thread. By using
ConfigureAwait(false), the total time to execution is much
lower and we truly get the best performance out of async.

20 PB

Be careful of variable allocations
Mitchel Sellers
@mitchelsellers

Inside async methods, .NET will create a state machine
behind the scenes to lift out local variables for you. That
way, when the method resumes, all the values are still
there. It’s a fantastic feature, but at it’s not yet smart
enough to tell if you still need a particular variable.

Consider this code example:

var today = DateTime.Now;

var tomorrow = today.AddDays(1);

await MyTaskHere();

Console.WriteLine(tomorrow);

In this example we have two DateTime variables
declared - yes, it’s a trivial example, but it proves
the point. After the await, we only need to use the
“tomorrow” value. However, the state machine will lift
out both the today and tomorrow variables. In this
example, the object that is used to retain state for the
async operation is larger than necessary. This means
more variable declarations, and eventually this can lead
to additional GC cycles, and so on.

14

21 PB

To avoid this, and reduce the size of the state-tracking
object, you could re-write the code like so:

var tomorrow = DateTime.Now.AddDays(1);

await MyTaskHere();

Console.WriteLine(tomorrow);

By being smart with the variables that you have inside
an async method, you can help control the size of the
state-tracking object.

22 PB

How to stress test your public
facing web application using the
cloud (or without it)
Niall Merrigan
@nmerrigan

1. Simple HTTP calls
Running Web Capacity Analysis Tool (WCAT) on Azure
allows you to create multiple instances of a VM from
different geographic locations, and thoroughly stress the
application to find areas of poor performance. You can
then track load

If your site is internal, you can still use WCAT to
simulate load. It’s advisable to run it from different
machines to give the best results.

You can download WCAT from IIS.NET:

15

23 PB

2. Coded UI Tests
The more adventurous among you can also create Coded
UI Tests (CUITs) and implement them on Azure. CUITs
can interact with the application and test parts that a
simple HTTP call cannot.

To make this work you need to have Visual Studio
Premium, a UIMap to do the work on, and an open
desktop on the VM in the cloud. An extra advantage
is that you can test your application from different
geographic locations and see how it performs when
doing actual scripted UI commands.

24 PB

Using the keyword await doesn’t
make the work asynchronous
Chris Hurley
Red Gate

The async/await pattern makes it easy to write code that
depends on work that’s done asynchronously, but it
doesn’t turn synchronous code into asynchronous code.

If you await an async Task method that does some work
and returns a value, the work will be done synchronously
– the original method is waiting for a Task object to be
returned which it can then await on, but the only Task
it gets is one which is wrapped around the return value
and set to “completed”. This is useful if you are chaining
async methods, but in this case it is confusing.

By the time the awaiting method sees the Task, it’s
already complete, so the code continues to execute
synchronously. If you want to do work asynchronously,
you need to pass back a Task object representing the
work in progress. One way of doing this is by using

Task.Run().

16

25 PB

Don’t use async/await for
short methods
Chris Hurley Red Gate

Async/await is great for avoiding blocking while potentially
time-consuming work is performed, but there are
overheads associated with running an async method: the
current execution context has to be captured, there may
be a thread transition, and a state machine is built through
which your code runs. The cost of this is comparatively
negligible when the asynchronous work takes a long time,
but it’s worth keeping in mind.

Avoid using async/await for very short computational
methods or having await statements in tight loops (run
the whole loop asynchronously instead). Microsoft
recommends that any method that might take longer than
50ms to return should run asynchronously, so you may
wish to use this figure to determine whether it’s worth
using the async/await pattern.

This doesn’t apply when using the framework-provided
async I/O methods, which are designed to return
synchronously where possible and generally resume on
the same thread that was handling the original request.
Therefore it’s fine to use async/await whenever potentially-
blocking I/O occurs, allowing your ASP.NET application to
process concurrent requests more efficiently.

17

26 PB

Turn off Change Tracking in
Entity Framework
Raghavendra
@vamosraghava

If you have to query a database for some read-only
data in Entity Framework, make sure that Change
Tracking is turned off, so you’re not tracking
individual objects or object graphs whose state won’t
change. Use some code along these lines to do it:
Context.MyCollection.AsNoTracking().where(x=>x.Id);

For example:

using (var context = new BloggingContext())

{

 // Query for all blogs without tracking them

 var blogs1 = context.Blogs.AsNoTracking();

 // Query for some blogs without tracking them

 var blogs2 = context.Blogs

 .Where(b => b.Name.Contains(“.NET”))

 .AsNoTracking()

 .ToList();

}

18

27 PB

AsNoTracking() is an extension method defined
on IQueryable<T>, so you’ll need to import the
System.Entity.Data namespace. For more details, to
understand the performance gains of AsNoTracking(),
have a look at
http://msdn.microsoft.com/en-us/library/cc853327.aspx and

http://blog.staticvoid.co.nz/2012/4/2/entity_framework_and_

asnotracking

Always use compiled queries in
Entity Framework

Using compiled queries on top of ObjectContext or
DBContext can significantly improve application
performance, because you save much of the time
that Entity Framework would have to spend
compiling your query to SQL.

19

28 PB

Diagnosing JavaScript memory
leaks with Chrome Dev tools
Matt Lee
@thatismatt, github.com/thatismatt

A heap snapshot in Chrome Dev Tools aggregates
your objects by type, so anonymous objects are
grouped together, which makes it tricky to diagnose
a memory leak’s cause.

A neat workaround is to construct your objects with
a named constructor function. If you namespace
these functions too, you end up with a set of objects
with names like e.g. RedGate.Foo, where once all you
had was a load of “Object”s. Now you can easily filter
by type, find out if it really is your code that’s causing
a memory leak, and hopefully pinpoint which type is
the problem.

20

29 PB

Here’s an illustration of the sort of results you can
get, using a toy example where we insert objects into
an array but never remove them:

30 PB

Monitoring memory consumption
over time
Matt Lee
@thatismatt, github.com/thatismatt

When you’re hunting for a memory leak, it’s easy to
fall into the trap of not profiling for long enough.
Consider this curve:

On the face of it, it looks like we might have a
memory problem. But of course, garbage collection
only happens periodically, so it’s perfectly legitimate
for browser memory usage to increase over time.
What matters is the pattern you see when garbage
collections occur. You expect a sawtooth pattern, a
bit like this:

MEMORY
USE

TIME

21

31 PB

The important point is to make sure you profile
long enough to see the whole curve. Otherwise, you
might mistakenly believe you have a memory leak,
and misidentify the cause as objects that will be
garbage collected.

MEMORY
USE

TIME

MEMORY
USE

TIME

If the sawtooth stays flat, as in the example above,
you probably don’t have a leak. On the other hand,
if it’s increasing, as in the example below, you
probably do:

32 PB

Use JValue in JSON.Net to parse
complex JSON objects that you
don’t have POCO types for
JP Toto
@jptoto

When parsing the JSON response from an API, it’s
not always easy to model the response perfectly
in C#. Fortunately, you may only need part of the
response. This is where the static JValue class in
JSON.Net comes in handy.

If you’ve got your response string, you can parse
it into a dynamic type and then access the object
in whatever way you need, so long as you know its
structure:

22

http://en.wikipedia.org/wiki/Plain_Old_CLR_Object

33 PB

using Newtonsoft.Json.Linq;

dynamic json = JValue.Parse(response_string);

foreach (dynamic something in json)

{

 string name = something.name;

 int count = Convert.ToInt32(something.total);

}

It’s quite handy and much easier than trying
to model a giant POCO after some large JSON
response.

34 PB

Cache JavaScript and
CSS permanently
Michael Williamson
mike.zwobble.org

Cache static content such as JavaScript and CSS
files permanently, and change the URL when the
contents change. For bonus points, automatically
generate the URL based on the hash of the content,
so you don’t need to remember to update the URL
manually. For instance, make /static/hash-of-the-
content/js/main.js an alias for /static/js/main.js using
URL Rewrite or somesuch.

23

35 PB

Load external JavaScript content
asynchronously
Michael Williamson
mike.zwobble.org

Otherwise, if an external site is loading slowly, your
own page will stall until the external site finally
finishes loading.

If you’re including something that can’t be loaded
asynchronously, for instance, an advert snippet that
uses document.write, put it in an iframe instead.

24

36 PB

Profile, don’t speculate!
Tiago Pascoal
pascoal.net

Performance is something you should be concerned with
from the start, by following best practices and general
guidelines, rather than focusing on nitty gritty details.
However, there often comes a time where you need to
optimize your code to make it faster.

It’s tempting to rely on your gut and focus on spots of
code that you think are slow, but if you do that you run
the risk of speeding up code that doesn’t make much
difference to overall performance. After all, even if you
double the performance of code that only executes for
1% of overall time, the end result will be negligible.

Don’t speculate. Use code profilers to measure where
time is being spent (either optimize for speed or for
memory use), so you can focus your energy on the
optimizations that will have the greatest impact on
the overall performance of your system.

25

37 PB

More free eBooks from Red Gate

Practical Performance Profiling:
Improving the efficiency of .NET code
by Jean-Philippe Gouigoux

Theory and practical skills to analyze and improve the
performance of .NET code. Gouigoux guides the reader
through using a profiler and explains how to identify and
correct performance bottlenecks.

.NET Performance Testing and Optimization
by Paul Glavich and Chris Farrell

A comprehensive and essential handbook for anybody who
wants to set up a .NET testing environment and get the
best results out of it, or learn effective techniques for testing
and optimizing .NET applications.

Under the Hood of .NET Memory Management
by Chris Farrell and Nick Harrison

Chris Farrell and Nick Harrison take you from the very
basics of memory management, all the way to how the
OS handles its resources, to help you write the best code
you can.

http://www.red-gate.com/community/books/practical-performance-profiling
http://www.red-gate.com/community/books/practical-performance-profiling
http://www.red-gate.com/community/books/dotnet-performance-testing-complete-guide
http://www.red-gate.com/community/books/under-the-hood-dotnet-memory-management

38 PB

Tools from Red Gate

ANTS Performance Profiler
Identify bottlenecks and optimize the
performance of your application.

ANTS Memory Profiler
Find memory leaks and optimize the memory
usage of your application.

.NET Reflector
Browse, analyse, decompile, and debug your
.NET code.

SmartAssembly
.NET obfuscator to protect your IP; plus, Error
Reporting functionality to help you ship stable
software by getting early user feedback.

.NET Demon

.NET Demon compiles your code continuously,
so you see errors as soon as they are introduced.

http://www.red-gate.com/products/dotnet-development/ants-performance-profiler/
http://www.red-gate.com/products/dotnet-development/ants-memory-profiler/
http://www.reflector.net/
http://www.red-gate.com/products/dotnet-development/smartassembly/
http://www.red-gate.com/products/dotnet-development/dotnet-demon/

	Foreword
	Want to build scalable websites and services? Work asynchronously
	Where are your custom performance counters?
	RavenDB
	Don’t call AsEnumerable on a collection before using LINQ
	Never call .Wait() or .Result on 		a Task
	Throwing HttpResponseExceptions
	Web API tracing
	Message Handlers
	Database access
	When you’re profiling, prefer accuracy to detail
	Make the most of connection pooling by closing SQLConnection as soon as possible
	OutputCache
	Use ConfigureAwait to avoid thread hopping, especially in library code
	Be careful of variable allocations
	How to stress test your public facing web application using the cloud (or without it)
	Using the keyword await doesn’t make the work asynchronous
	Don’t use async/await for 		short methods
	Turn off Change Tracking in 	Entity Framework
	Always use compiled queries in Entity Framework
	Diagnosing JavaScript memory leaks with Chrome Dev tools
	Monitoring memory consumption over time
	Use JValue in JSON.Net to parse complex JSON objects that you don’t have POCO types for
	Cache JavaScript and 				CSS permanently
	Load external JavaScript content asynchronously
	Profile, don’t speculate!
	More free eBooks from Red Gate
	Tools from Red Gate

